Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mavrikis, M; Lalle, S; Azevedo, R; Biswas, G; Roll, I (Ed.)Exploratory learning environments (ELEs), such as simulation-based platforms and open-ended science curricula, promote hands-on exploration and problem-solving but make it difficult for teachers to gain timely insights into students' conceptual understanding. This paper presents LearnLens, a generative AI (GenAI)-enhanced teacher-facing dashboard designed to support problem-based instruction in middle school science. LearnLens processes students' open-ended responses from digital assessments to provide various insights, including sample responses, word clouds, bar charts, and AI-generated summaries. These features elucidate students' thinking, enabling teachers to adjust their instruction based on emerging patterns of understanding. The dashboard was informed by teacher input during professional development sessions and implemented within a middle school Earth science curriculum. We report insights from teacher interviews that highlight the dashboard's usability and potential to guide teachers' instruction in the classroom.more » « lessFree, publicly-accessible full text available July 26, 2026
-
Free, publicly-accessible full text available June 25, 2026
-
Free, publicly-accessible full text available April 23, 2026
-
Zhai, X; Latif, E; Liu, N; Biswas, G; Yin, Y (Ed.)Collaborative dialogue offers rich insights into students’ learning and critical thinking, which is essential for personalizing pedagogical agent interactions in STEM+C settings. While large language models (LLMs) facilitate dynamic pedagogical interactions, hallucinations undermine confidence, trust, and instructional value. Retrieval-augmented generation (RAG) grounds LLM outputs in curated knowledge, but requires a clear semantic link between user input and a knowledge base, which is often weak in student dialogue. We propose log-contextualized RAG (LC-RAG), which enhances RAG retrieval by using the environment logs to contextualize collaborative discourse. Our findings show that LCRAG improves retrieval over a discourse-only baseline and allows our collaborative peer agent, Copa, to deliver relevant, personalized guidance that supports students’ critical thinking and epistemic decision-making in a collaborative computational modeling environment, C2STEM.more » « lessFree, publicly-accessible full text available June 17, 2026
-
Free, publicly-accessible full text available June 10, 2026
-
Hmelo-Silver, C. E. (Ed.)This paper develops a systematic approach to identifying and analyzing high school students’ debugging strategies when they work together to construct computational models of scientific processes in a block-based programming environment. We combine Markov models derived from students’ activity logs with epistemic network analysis of their collaborative discourse to interpret and analyze their model building and debugging processes. We present a contrasting case study that illustrates the differences in debugging strategies between two groups of students and its impact on their model-building effectiveness.more » « less
-
de Vries, E. (Ed.)We articulate a framework for characterizing student learning trajectories as they progress through a scientific modeling curriculum. By maintaining coherence between modeling representations and leveraging key design principles including evidence-centered design, we develop mechanisms to evaluate student science and computational thinking (CT) proficiency as they transition from conceptual to computational modeling representations. We have analyzed pre-post assessments and learning artifacts from 99 6th grade students and present three contrasting vignettes to illustrate students’ learning trajectories as they work on their modeling tasks. Our analysis indicates pathways that support the transition and identify domain-specific support needs. Our findings will inform refinements to our curriculum and scaffolding of students to further support the integrated learning of science and CT.more » « less
An official website of the United States government

Full Text Available